お知らせ

ヘパリン固定化温度応答性培養表面についての報告がMacromolecular Bioscienceに掲載されました。

共同研究をしている奈良県立医科大学と小林 純 講師の論文です。

“Terminus-selective covalent immobilization of
heparin on a thermoresponsive surface using click chemistry for
efficient binding of basic fibroblast growth factor”

ONODERA Yu†, KOBAYASHI Jun*, MITANI Seiji, HOSODA Chihiro, BANNO Kimihiko, HORIE Kyoji, OKANO Teruo, SHIMIZU Tatsuya, SHIMA Midori, TATSUMI Kohei*

Macromolecular Bioscience, Online ahead of Print

doi:10.1002/mabi.202300307

Abstract

Cell therapy using endothelial cells (ECs) has great potential for the treatment of congenital disorders, such as hemophilia A. Cell sheet technology utilizing a thermoresponsive culture dish is a promising approach to efficiently transplant donor cells. In this study, a new method to prepare terminus-selective heparin-immobilized thermoresponsive culture surfaces is developed to facilitate the preparation of EC sheets. Alkynes are introduced to the reducing terminus of heparin via reductive amination. Cu-catalyzed azide-alkyne cycloaddition (CuAAC) facilitates efficient immobilization of the terminus of heparin on a thermoresponsive surface, resulting in a higher amount of immobilized heparin while preserving its function. Heparin-immobilized thermoresponsive surfaces prepared using CuAAC exhibit good adhesion to human endothelial colony-forming cells (ECFCs). In addition, upon further binding to basic fibroblast growth factor (bFGF) on heparin-immobilized surfaces, increased proliferation of ECFCs on the surface is observed. The confluent ECFC monolayer cultured on bFGF-bound heparin-immobilized thermoresponsive surfaces exhibits relatively high fibronectin accumulation and cell number and detaches at 22 °C while maintaining the sheet-like structure. Because heparin has an affinity for several types of bioactive molecules, the proposed method can be applied to facilitate efficient cultures and sheet formations of various cell types.

PAGE TOP